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Purpose. To test the suitability of an Iterative Two-Stage Bayesian (ITSB) technique for population

pharmacokinetic analysis of rich data sets, and to compare ITSB with Standard Two-Stage (STS)

analysis and nonlinear Mixed Effect Modeling (MEM).

Materials and Methods. Data from a clinical study with rapacuronium and data generated by Monte

Carlo simulation were analyzed by an ITSB technique described in literature, with some modifications,

by STS, and by MEM (using NONMEM). The results were evaluated by comparing the mean error

(accuracy) and root mean squared error (precision) of the estimated parameter values, their

interindividual standard deviation, correlation coefficients, and residual standard deviation. In addition,

the influence of initial estimates, number of subjects, number of measurements, and level of residual

error on the performance of ITSB were investigated.

Results. ITSB yielded best results, and provided precise and virtually unbiased estimates of the

population parameter means, interindividual variability, and residual standard deviation. The accuracy

and precision of STS was poor, whereas ITSB performed better than MEM.

Conclusions. ITSB is a suitable technique for population pharmacokinetic analysis of rich data sets, and

in the presented data set it is superior to STS and MEM.

KEY WORDS: Bayesian analysis; data analysis; mixed effect modeling; Monte Carlo simulation;
population pharmacokinetics.

INTRODUCTION

Over the last two decades population pharmacokinetics
has become a major topic in the field of pharmacokinetics
(1). The reasons for the shift from pharmacokinetic analysis
in the individual to the description of pharmacokinetics in a
population are closely related to the relatively large variabil-
ity in pharmacokinetics between individuals. For adequate
drug treatment in individual patients, therapeutic drug
monitoring techniques by Bayesian feedback have been
developed (2Y4). These procedures require reliable popula-
tion pharmacokinetic data. In addition, analysis of the
influence of covariates (e.g., body weight, body surface area,
age, gender, creatinine clearance, concomitant diseases and

medication) may reduce the uncertainty in the predicted
individual pharmacokinetic behavior, and thus improving the
precision of drug therapy.

Population pharmacokinetics has focused mainly on the
analysis of sparse data from a large group of subjects, i.e.,
where only a few blood samples (typically 1 to 4) are taken
from each individual, allowing assessment of the influence of
covariates. On the other hand, in studies with a limited
number of patients, a study design with rich data sampling
(typically, 10 to 20 measurements in each subject, or three to
five measurements for each parameter) is often more
appropriate, e.g., to develop a pharmacokinetic model. The
population analysis of rich data from a relatively small group
of subjects (typically, 6 to 20) has received much less
attention in literature. The Standard Two-Stage (STS)
analysis is the traditional approach for rich data, probably
due to the simplicity and the similarity to the usual procedure
in descriptive statistics, i.e., calculation of means and
standard deviations of parameters from a set of subjects.
However, the application of STS has some obvious disadvan-
tages, and even for rich data sets, STS overestimates the
interindividual variability of model parameters.

Over the last decades several techniques have been
described to allow population pharmacokinetic analysis,
including nonlinear Mixed Effect Modeling (MEM; imple-
mented in the program NONMEM) (1), nonparametric
methods (NPML, NPEM, NPAG) (4), parametric expecta-
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tion-maximization methods (MCPEM, PEM) (5,6), Iterative
Two-Stage Bayesian (ITSB) methods (7Y10), and Bayesian
analysis using Markov chain Monte Carlo techniques (11).
Recently a comparison between various methods was per-
formed simulated using sparse data sets (12).

In the present paper a procedure for ITSB population
pharmacokinetic analysis is described, and evaluated by
comparison with STS and MEM analysis, using a rich data
set from a clinical study with rapacuronium and data gen-
erated by Monte Carlo simulation. For the ITSB method
some aspects of experiment design and data characteristics,
i.e., number of subjects, number of measurements, degree of
measurement error, and covariance between parameters, are
also investigated.

MATERIALS AND METHODS

Data

Clinical Data Set

Data were taken from a clinical PK-PD modeling study
of rapacuronium performed in our department (13). In short,
ten patients (eight male, two female; aged 26Y64 years; body
weight 62Y88 kg; ASA class IYIII), undergoing elective
surgery, received thiopental-fentanyl-isoflurane-O2-N2O an-
esthesia. Rapacuronium was administered as a short-term
infusion, median (range) duration 4.8 (2.5Y5.7) min and dose
1.01 (0.58Y1.22) mg kgj1. Arterial blood samples were
obtained, 15 to 19 from each patient, and plasma rapacuronium
concentrations were determined by high-performance liquid
chromatography. The plasma concentration data are shown in
Fig. 1.

Data Generation by Monte Carlo Simulation

One hundred synthetic data sets were generated by
Monte Carlo simulation. The study design and population
model were close to that of the clinical study (13). In the
simulation study, a dose of 1 mg kgj1 was administered to a
panel of ten subjects (body weight 70 kg) by an intravenous
infusion over 4 min. Plasma concentration was measured at
18 time points (at 2, 3, 4, 6, 8, 10, 12, 15, 20, 30, 45, 60, 90, 120,

180, 240, 300, and 360 min after the start of the infusion). The
population pharmacokinetic parameters of a mammillary
three-compartment model with elimination from the central
compartment are listed in Table I. Pharmacokinetic param-
eters were log-normally distributed, and covariance between
the parameters was assumed to be absent. Measurement er-
rors were log-normally distributed with a standard deviation
of 0.1 (corresponding to a coefficient of variation of 10%).

Population Analysis

Iterative Two-Stage Bayesian (ITSB) Analysis

The procedure for ITSB analysis is similar to the method
described by Mentré and Gomeni (9) and by Bennett and
Wakefield (10), with a few modifications. A modification of
the method with a fixed value for the residual standard
deviation has been described earlier by Steimer et al. (7), and
a similar procedure is applied in the program IT2B (USC*-
PACK, Laboratory of Applied Pharmacokinetics, Los
Angeles, CA, USA) (4).

In short, the ITSB procedure works as follows. Rough
estimates of each population parameter (mean and standard
deviation) and residual standard deviation (sres) are assumed
to be known. Estimates from STS analysis are usually
suitable. In the first stage, the individual pharmacokinetic
parameters of each patient are obtained from a Bayesian
nonlinear fitting procedure, using the measurements in that
patient as well as the estimated population parameters and
sres as Bayesian priors. In the second stage, the population
mean and standard deviation of each parameter are calcu-
lated from the individual parameters, and sres is estimated.
The first stage is then repeated using the new population
parameters as Bayesian priors. Both stages are repeated until
the new population parameters and sres converge, i.e., are
similar to the values of the previous cycle.

Stage 1. For each subject the individual pharmacokinetic
parameters are estimated from the observed concentration
data (measurements) by weighted nonlinear Bayesian
analysis using the Marquardt algorithm (14) for the
minimization of the objective function Ok, i.e., minus two

Fig. 1. Plasma concentration profiles of ten subjects receiving a

short-lasting infusion of rapacuronium. The inset expands the first

30 min.

Table I. Population Parameters for Monte Carlo Simulations

Variable Unit Meana sb

CL ml minj1 kgj1 7.29 35.3

V1 ml kgj1 52 23.1

CL12 ml minj1 kgj1 2.43 47.1

V2 ml kgj1 43 34.9

CL13 ml minj1 kgj1 0.73 25.5

V3 ml kgj1 92 32.6

A b
res % 10 Y

CL Clearance from central compartment, V1 volume of central

compartment, CL12 clearance between central and shallow peripher-

al compartments, V2 volume of shallow peripheral compartment,

CL13 clearance between central and deep peripheral compartments,

V3 volume of deep peripheral compartment, sres residual standard

deviation.
a Geometric mean (mean of log-normal distribution).
b Expressed as coefficient of variation, in percent (standard deviation

of log-normal distribution corresponds to value / 100).
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log likelihood of the individual parameter set k, given the
observed concentration data (Y-term) and the population
parameter set (P-term):

Ok ¼
Xnk

i¼1

ðYobs; k; i � Ycalc; k; iÞ2
s2

res;k; i
þ ln s2

res;k; i

� �
þ ln 2�ð Þ

� �
Y � termð Þ

þ½Pk � Ppop�T COVpop

� ��1
Pk � Ppop

� �

þ ln det COVpop

� �� �
þm� ln 2�ð Þ P� termð Þ

ð1Þ

where

nk Number of measurements (observed concen-
trations) for subject k (k = 1, 2, ..., nsubj)

Yobs, k, i Observed concentration at time point i (i = 1, 2, ...,
n) for subject k

Ycalc, k, i Calculated concentration at time point i for
subject k

sres, k, i Residual standard deviation (standard deviation
of difference between observed and calculated
concentration) at time point i for subject k

[PkjPpop] Vector of differences between individual parameters
of subject k (Pk) and population parameters (Ppop)

[COVpop] Covariance matrix of population parameters
m Number of pharmacokinetic model parameters

Fln_ denotes natural logarithm, Fdet_ denotes determi-
nant of the matrix, T denotes transpose of the matrix, and
Fj1_ denotes the inverse of the matrix. For an assumed log-
normal distribution of residual errors in the measurements, Y

refers to the natural logarithm of the observed and calculated
concentrations. For an assumed log-normal distribution of
parameters within the population, P refers to the natural
logarithm of the individual and population parameters.

If the covariance between each pair of population
parameters is assumed to be zero, the P-term in Eq. (1) can
be simplified:

Xm

p¼1

Pk; p � Ppop; p

� �2

s2
pop; p

þ ln s2
pop; p

� �
þ ln 2�ð Þ

( )
ð2Þ

where

Pk, p Parameter p (p = 1, 2, ..., m) for subject k
Ppop, p Population parameter p

spop, p Standard deviation of population parameter p (i.e.,
square root of diagonal element p, p of matrix
COVpop)

The residual standard deviation (sres, k, i) may be a
function of the subject (k) and a function of the observed or
calculated concentration (i). In the present paper the residual
errors are assumed to be log-normally distributed with a
common value sres for each subject and each measurement.

Stage 2. For each model parameter, the population
mean and standard deviation are calculated assuming a
normal or log-normal distribution (in the latter case the
logarithms of the parameters are used for the calculation of
mean and standard deviation, and transformed back to the
normal scale). The population means are calculated from:

Ppop; p¼

Pnsubj

k¼1

Pk; p

nsubj
ð3Þ

where nsubj is the number of subjects.
The population standard deviations and the correlation

matrix between the population parameters are calculated
from the covariance matrix of the population parameters,
which is obtained from:

COV pop;p;q

¼

Pnsubj

k¼1

Pk; p � Ppop; p

� �
Pk; q � Ppop; q

� �
þ COV k; p; q

	 


nsubj � 1

ð4Þ

where

COVpop, p, q Covariance between population parameters
p and q

COVk, p, q Covariance between individual parameters
p and q for subject k

The covariance matrix of the standard errors in the
individual parameters [COVk] is obtained from (14):

COV k½ � ¼ �k½ ��1 ð5Þ

where the elements of matrix [ak] are calculated from:

�k; p; q ¼
Xnk

i¼1

1

s2
res; k; i

@Ycalc; k; i

@Pp

@Ycalc; k; i

@Pq

( )
ð6Þ

Note that in the denominator of Eq. (4) a value of nsubjj1 is
used, i.e., the degrees of freedom (analogous to the calcula-
tion of a standard deviation), where earlier papers (9,10)
used nsubj. The latter method was tested also.

Assuming a common value sres for each subject and each
measurement, the residual variance is calculated from the
following equation, obtained upon rearrangement of Eq. (17)
from Mentré and Gomeni (9):

s2
res ¼

Pnsubj

k¼1

Pnk

i¼1

Yobs; k; i � Ycalc; k; i

� �2 þ
Pm

p¼1

Pm

q¼1

COV k; p; q
@Ycalc; k ; i

@Pp

@Ycalc; k ; i

@Pq

� �( )

Pnsubj

k¼1

nk

ð7Þ

Iterative Procedure. Stage 1 is performed for each
subject using initial estimates for Ppop, COVpop, sres (details
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described in the next section), and Pk (details described
below), followed by the calculation of Ppop, COVpop, and sres

in stage 2. Then stage 1 is repeated, using Ppop, COVpop, and
sres obtained in stage 2. This process is repeated until the
relative difference of the population values obtained from
Eqs. (3), (4), (5) and (6) (i.e., the mean and standard deviation
of each parameter and the residual standard deviation sres)
and the corresponding prior value (used in Eq. 1) is smaller
than some predefined value (0.01%). For this investigation,
the initial parameter values Pk in stage 1 are set equal to Ppop

during the first 10 cycles to reduce the risk of convergence of
individual k to a local minimum. Thereafter the initial pa-
rameter values Pk in stage 1 are set to the values Pk obtained
in the previous stage 1 to accelerate convergence.

Measures for Goodness-of-fit. As a measure of
goodness-of-fit of the final population parameter set, the
sum of the objective function Ok (Eq. 1) for all subjects,
representing minus two log likelihood of the total parameter
set, was calculated

@O ¼
Xnsubj

k¼1

Ok ð8Þ

Akaike Information Criterion (AIC) equals minus two log
likelihood (SO) with a Fpenalty_ of two for each parameter to
be estimated, i.e., the individual parameters for each patient,
population mean and standard deviation of each parameter,
estimated correlation coefficients between population
parameters (if applicable), and residual standard deviation,
respectively:

AIC ¼ @Oþ 2mnsubj þ 4mþ cm m� 1ð Þ þ 2 ð9Þ

where c = 0 if correlation coefficients between parameters are
assumed to be absent, and c = 1 if correlation coefficients
between parameters are estimated during the analysis.

The following equation was calculated, i.e., the sum of
the weighted residuals of concentrations and parameters
divided by the degrees of freedom, i.e., the total number of
measurements minus the number of population parameters:

@WSS ¼

Pnsubj

k¼1

Pnk

i¼1

Yobs; k; i�Ycalc; k; ið Þ2
s2

res; k; i

� �
þ Pk � Ppop

� �T
COVpop

� ��1
Pk � Ppop

� �� �

Pnsubj

k¼1

nk

� �
� m

ð10Þ

In preliminary tests it was observed that the value of SWSS
converges to unity in the case of a successful convergence of
the population parameters and residual standard deviation.

Improving Robustness. To minimize the risk of con-
vergence to a local minimum of SO (Eq. 8), an extension of
the ITSB procedure was developed. The ITSB procedure was
started using the initial estimates as described above. After
the first ten cycles (or less, in the case that the convergence
criterion was reached), the current values of SO, population
parameter set, covariance matrix and sres were stored. Then a
new set of population prior values was randomly chosen from

a log-normal distribution with a standard deviation of one
(corresponding to a coefficient of variation of 100%) around
the initial estimates of the population means. A new value for
sres was also randomly chosen in a similar manner. After ten
more cycles (or less, in the case that the convergence
criterion was reached), the result was compared to the
stored results. If SO was smaller than the stored value, the
stored data were replaced by the current values. Then a new
set of population priors was drawn and the ITSB procedure
was started again. This process of starting the ITSB
procedure with a randomly drawn population prior was
performed 20 times. Finally, the normal ITSB procedure
was started with the Fbest parameter set._

Standard Two-Stage (STS) Analysis

In stage 1 the individual pharmacokinetic parameters of
each subject were estimated as described for the ITSB
analysis, leaving out the (Bayesian) P-term in Eq. (1). In
stage 2 the population mean and standard deviation of each
model parameter were calculated as described for the ITSB
analysis, leaving out the term COVk, p, q in Eq. (4). STS can be
performed in a single cycle of stage 1 + 2, since the parameter
set minimizing the first term of Eq. (1) is independent of sres, k, i

if a common value sres, k is assumed for each measurement.
The residual standard deviation sres, k was calculated from:

s2
res; k ¼

Pnk

i¼1

Yobs; k; i � Ycalc; k; i

� �2
n o

nk � m
ð11Þ

and the population residual standard deviation sres was
obtained from:

s2
res ¼

Pnsubj

k¼1

s2
res; k

nsubj
ð12Þ

Nonlinear Mixed Effect Modeling (MEM) using NONMEM

For comparison the same data sets were also analyzed by
nonlinear mixed effect modeling using NONMEM (NONMEM
V Version 1.1; Globomax, Hanover, MD). Settings were similar
to those used for ITSB, i.e., the same model and parameters, a
log-normal distribution of interindividual variability of the
population parameters and a log-normal distribution of the
residual error. The conditional method (FOCE) was used, and
concentration measurement data were transformed logarithmi-
cally. To avoid an interchange of the parameters CL12 and V2

with CL13 and V3, possibly disturbing the population estimates,
one parameter of the population model was reparametrized to
ensure that CL12 and V2 correspond to the rapidly equilibrat-
ing compartment, i.e., that k21 > k31 where k21 = CL12 / V2 and
k31 = CL13 / V3. Initial estimates were equal to the exact
values. If this did not result in successful convergence, the
initial value of the residual error variance was increased, and
the process was repeated for that particular data set. If
convergence still did not occur, various initial values were
tested until convergence was achieved. The NONMEM
control file is listed in the Appendix.
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Evaluation

Analysis of Data Sets

The clinical data set and the 100 simulated data sets
were analyzed by the ITSB, STS and MEM methods as
described above. Unless stated otherwise, the ITSB analysis
was performed assuming that correlation coefficients be-
tween parameters were absent, i.e., off-diagonal values of
COVpop were calculated from Eq. (4) for evaluation of
accuracy and precision, but Eq. (2) was used in stage 1
(equivalent to setting off-diagonal values of COVpop to zero
in Eq. 1).

Unless stated otherwise, initial estimates of the individ-
ual parameters were set to the exact parameter values, to test
the accuracy and precision of the methods under optimal
conditions. The procedure for improving robustness was not
applied in these cases.

In addition, the robustness of the ITSB analysis was
investigated using a set of perturbed initial estimates: all
population means for clearance parameters were multiplied
by 4, and their corresponding standard deviations by 0.5; all
population means for volume parameters were multiplied by
0.25, and their corresponding standard deviations by 2; the
residual standard deviation was multiplied by 4. These initial
estimates were tested both without and with the procedure
for improving robustness.

Accuracy and Precision of Estimated Parameter Values

The accuracy and precision of each parameter (popula-
tion means, interindividual standard deviations, correlation
coefficients, and residual standard deviation for population
results, and individual parameter values for individual
results) were evaluated from 100 sets for each modification
of the data set and for each method of analysis, and were
calculated as mean error (ME, or bias) and root mean
squared error (RMSE), respectively (15). Both ME and
RMSE were expressed as a percentage of the exact value
(except for correlation coefficients):

ME ¼

Pnset

j¼1

Pj�Ptrue; jð Þ
nset

0
B@

1
CA

Pexact
� 100% ð13Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnset

j¼1

Pj�Ptrue ; jð Þ2

nset

s

Pexact
� 100% ð14Þ

where nset is the number of data sets (100 data sets for the
population results, 1,000 data sets for the individual results),
Pj is the estimated parameter of set j, Ptrue,j is the cor-
responding true parameter value, and Pexact is the exact
parameter value (i.e., the parameter value without random
error). For the population results, Ptrue, j is the actual
geometric mean, standard deviation, correlation coefficients,
or residual standard deviation, as obtained from the Ftrue_

individual parameters and Ftrue_ concentrations from set j.
For the individual results, Ptrue,j is the Ftrue_ individual
parameter of the same subject. For the correlation coeffi-
cients, ME and RMSE were not expressed as a percentage of
their true value (zero) by omitting the factors Pexact and 100%.
ME and RMSE of all 15 correlation coefficients between the 6
parameters were reported as a single mean value.

Standard Errors of Population Parameters

ITSB does not provide standard errors of population
parameters, in contrast to MEM. Therefore standard errors
were obtained using the results from the Monte Carlo
analysis. We assumed that the standard error of each par-
ameter (means, standard deviations, correlation coefficients,
and residual standard deviation) for each set could be
approximated from the corresponding RMSE (in percent).

Evaluation of Standard Errors

Assuming a Student t-distribution of the estimated
population and individual parameters around their true
value, the 95% confidence interval of the estimated param-
eter was obtained from:

CI 95%ð Þ ¼ P� t0:025; df � SE ð15Þ

where P is the estimated parameter value, SE its standard
error (in the same unit as P), and t the tabulated value of the
student t-distribution with a = 0.025 and df is the degrees of
freedom.

For population parameters the degrees of freedom was
nsetj1 (df = 99), and for individual parameters nsubjj1 (df =
9). The calculated standard errors of the estimated popula-
tion and individual parameters were evaluated by counting
the number of sets (population parameters) or subjects
(individual parameters) for which the true parameter value
was within the calculated 95% confidence interval.

Influence of Covariance

To investigate the performance of the ITSB procedure in
the case of significant covariance between population param-
eters, several modifications of the data set with known
covariance between each pair of population parameters (true
value of correlation coefficients varying between j0.9 and
0.9) were generated (100 sets for each modification) and
analyzed by ITSB, setting initial estimates to zero for each
correlation coefficient.

Influence of Study Design

To investigate the influence of the study design on the
performance of the ITSB procedure, the following modifica-
tions of the data set were generated and analyzed by ITSB
(100 sets for each modification):

Number of subjects. Data sets with 4,6,10 (= original
data set), 20, and 40 subjects.

Number of measurements per subject. Data sets with 6,
12, 18 (= original data set), 24 and 36 measurements per
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subject. The time points were selected between 1 and 480 min
after the start of the infusion, with gradually increasing
intervals similar to the original data set, and were equal for
each subject.

Number of subjects and measurements per subject. Data
sets with the same total number of measurement (144
measurements), but with a different number of subjects and
different number of measurements per subjects: 24 subjects
with 6 measurements each, 12 subjects with 12 measurements
each, 8 subjects with 18 measurements each, 6 subjects with
24 measurements each, and 4 subjects with 36 measurements
each.

Measurement error level. Data sets with measurement
error standard deviation of 0.02, 0.05, 0.1 (= original data set),
0.2, and 0.4 (i.e., 2 to 40% error).

Computer Implementation

The Monte Carlo simulations, nonlinear Bayesian fit-
ting, and ITSB and STS procedures were performed using the
program MW\Pharm version 3.61 (written by the author, and
available from MediWare BV, Zuidhorn, the Netherlands)
(16). To validate the computer program code, the ITSB and
STS procedures were also performed using MultiFit (written
by the author), a program written in a different computer
language (Borland Pascal instead of Visual Basic), not
sharing any part of the source code. MEM was performed
using NONMEM V Version 1.1.

RESULTS

Clinical Data Set

The three methods STS, ITSB, and MEM were applied to
a real data set (Fig. 1) from a clinical study with rapacuro-
nium, and the results are summarized in Table II. Depending
on the initial estimates for the population parameters and
sres, ITSB gave two different solutions, both complying with
the convergence criteria, but with different AIC values
(j56.46 and j61.64). The solution with the lowest AIC
(j61.64), i.e., with the highest likelihood, is considered the
best global solution, and that with the higher AIC (j56.46)

as a local minimum. The procedure for improving robustness
of ITSB described in BMaterials and Methods^ resulted in the
solution with a lowest AIC value (AIC j61.64).

Population means agreed reasonably well between STS,
MEM, and the global solution of ITSB. However, population
standard deviations varied widely between the methods, and
were higher for STS, and lower for MEM compared to ITSB.
Using MEM the standard deviations of the parameters CL12

and CL13 were close to zero.

ITSB Analysis of Monte Carlo Data Sets

The ITSB analysis performed satisfactorily, as can be
concluded from the ME (Table III) and RMSE (Table IV)
values. Bias (ME) of population means and standard deviations
obtained from ITSB was small, and negligible compared to
RMSE. The precision of the individual parameters (Table V)
is in agreement with the precision of the population
parameters: the RMSE of the individual values is about
three time higher (square root of the number of subject per
data set (ten subjects)) than the RMSE of the population
means. It was confirmed that SWSS (Eq. 10) converged to a
value close to unity (1 T 0.0001) in all data sets.

Using poor initial estimates, deviating markedly from
the true population values, the performance of ITSB without
the procedure for improving robustness was not satisfactory.
Although the calculation converged to the same final pop-
ulation parameters in 81 out of 100 sets, the results in the
remaining data sets deviated markedly from the true values,
resulting in larger values for ME and RMSE. The procedure
for improving robustness resulted in convergence to values
close to that obtained with the exact values as initial
estimates (Fbest case scenario_; data not shown).

In addition, ITSB analysis was performed without the
assumption of absence of covariance between the parame-
ters, i.e., using the complete covariance matrix obtained from
Eq. (4) in Eq. (1). In this case the precision of the population
estimates was slightly less, but the estimates of the correla-
tion coefficients between the parameters were close to their
true value zero (Table III).

To check to correctness of our modification in Eq. (4),
we tested the original version of Eq. (4) with denominator
nsubj replacing nsubjj1 (Table III). This modification had no

Table II. Population Parameters [Geometric Mean (Coefficient of Variation, in percent)] for the Clinical Rapacuronium Data Set, Obtained

by STS, ITSB, and NONMEM

Variable Unit STS ITSBa ITSBb NONMEM

CL ml minj1 kgj1 6.55 (28) 6.55 (25) 6.57 (24) 6.57 (21)

V1 ml kgj1 51.8 (23) 53.0 (18) 52.8 (17) 53.1 (14)

CL12 ml minj1 kgj1 2.15 (53) 2.13 (33) 2.13 (24) 2.11 (0)

V2 ml kgj1 39.6 (40) 46.2 (15) 42.9 (18) 42.1 (5)

CL13 ml minj1 kgj1 0.740 (24) 0.638 (32) 0.692 (17) 0.700 (0)

V3 ml kgj1 93.4 (30) 97.9 (24) 92.9 (23) 92.6 (18)

sres % 16.1 (21)c, d 16.5d 17.1d 18.2d

a Local minimum (AIC j56.46).
b Global minimum (AIC j61.64).
c Mean value of residual standard deviation in ten patients.
d Expressed as coefficient of variation, in percent (standard deviation of log-normal distribution corresponds to value / 100).
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visible effect on parameter means, correlation coefficients
and sres, but interindividual standard deviations were under-
estimated by about 7% on average.

STS Analysis

The STS analysis performed poorly compared to ITSB,
as can be concluded from the ME (Table III) and RMSE
(Table IV) values. Only for V1, STS performs almost as good
as ITSB. STS overestimated the population standard devia-

tions of each parameter considerably, except for CL and V1

(Table III). The individual parameter estimates were much
less precise than that obtained from ITSB (Table V).

NONMEM Analysis

The NONMEM analysis resulted in good accuracy
(Table III) and precision (Table IV) of the population
estimates. The same holds for the precision of the individual
values (Table V). However, the performance of MEM was

Table III. Accuracy of population mean, standard deviation (s), correlation coefficient (r), and residual standard deviation (sres) of a panel

of ten subjects

Variable STS ITSB

ITSB Correlation

coefficients estimated ITSB Using nsubj in Eq. (4) NONMEM

CL j0.9 0.1 0.1 0.1 0.2

V1 j0.9 j0.5 j0.6 j0.5 0.0

CL12 j1.0 1.5 1.5 1.4 1.2

V2 j6.4 j0.1 j1.3 0.0 j0.2

CL13 0.3 0.9 0.5 0.7 1.0

V3 11 j0.3 0.5 j0.7 0.0

s(CL) 5.5 j0.2 j0.0 j5.1 j5.0

s(V1) 4.3 j0.4 0.1 j6.5 j6.4

s(CL12) 38 4.3 8.5 j2.7 j2.0

s(V2) 50 j5.6 3.7 j13 j12

s(CL13) 71 j0.0 18 j12 j10

s(V3) 68 0.2 4.2 j6.6 j6.3

ra 0.01 0.01b 0.00 0.00b
j

c

sres j0.6 j0.8 j2.5 j0.3 j0.5

The presented values are ME (in percent of the exact values) of 100 panels, obtained by Standard Two-Stage (STS), Iterative Two-Stage

Bayesian (ITSB), ITSB with correlation coefficients estimated, ITSB using nsubj instead of nsubj j 1 in Eq. (4), and nonlinear Mixed Effect

Modeling (NONMEM).
a Mean value of 15 correlation coefficients between 6 model parameters; untransformed values (not expressed in percent).
b Correlation coefficient calculated from Eq. (4), but not used in stage 1.
c Correlation coefficients not provided by NONMEM.

Table IV. Precision of population mean, standard deviation (s), correlation coefficient (r), and residual standard deviation (sres) of a panel

of ten subjects

Variable STS ITSB

ITSB Correlation

coefficients estimated ITSB Using nsubj in Eq. (4) NONMEM

CL 3.5 0.9 0.9 0.9 1.0

V1 2.8 2.6 2.6 2.5 2.7

CL12 13 7.5 8.8 7.5 8.0

V2 16 5.5 9.9 5.7 5.8

CL13 12 5.7 9.3 5.8 6.2

V3 22 4.6 6.7 4.7 4.5

s(CL) 25 2.6 2.7 5.8 5.7

s(V1) 13 12 12 13 13

s(CL12) 87 17 27 16 17

s(V2) 95 17 24 21 20

s(CL13) 99 21 40 26 27

s(V3) 126 18 21 20 20

ra 0.36 0.18b 0.27 0.18b Yc

sres 3.3 3.8 4.4 3.8 3.8

The presented values are RMSE (in percent of the exact values) of 100 panels, obtained by Standard Two-Stage (STS), Iterative Two-Stage

Bayesian (ITSB), ITSB with correlation coefficients estimated, ITSB using nsubj instead of nsubj j 1 in Eq. (4), and nonlinear Mixed Effect

Modeling (NONMEM).
a Mean value of 15 correlation coefficients between 6 model parameters; untransformed values (not expressed in percent).
b Correlation coefficient calculated from Eq. (4), but not used in stage 1.
c Correlation coefficients not provided by NONMEM.
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less good than for ITSB, because population standard
deviations were underestimated by MEM (Table III).

Influence of Covariance on Accuracy and Precision
of ITSB Analysis

Accuracy and precision of the population means, stan-
dard deviations, correlation coefficients, and residual standard
deviation obtained by ITSB analysis were not markedly
affected by the presence of significant covariance between
each pair (true value of correlation coefficients varying
between j0.9 and 0.9; data not shown). In general the RMSE
values were slightly smaller than that listed in Table IV for
ITSB with correlations estimated.

Influence of Study Design on Accuracy and Precision
of ITSB Analysis

Number of Subjects

Bias (ME) in the population means was relatively
independent of the number of subjects (Fig. 2, first row).
Only for four subjects, bias in V2 and CL13 exceeded 2%.
Bias in the population standard deviations was more
pronounced, but decreased with the number of subjects,
except for V3, and was less than 6% for six subjects or more.
Bias in sres decreased with the number of subjects and was
less than 2% in all cases. RMSE of all parameters decreased
with the number of subjects. RMSE reduced by about 50%
by increasing the number of subjects by a factor 4 (Fig. 3, first
row).

Number of Measurements Per Subject

A similar pattern was found for the number of measure-
ments. Bias was pronounced for six measurements per
subjects, but was hardly affected if the number of measure-
ments increased from 12 to 36 (Fig. 2, second row). As for the
number of subjects, RMSE of all parameters reduced by
about 50% by increasing the number of measurements by a
factor 4 (Fig. 3, second row).

Number of Subjects and Measurements Per Subject

The influence of the number of subjects and measure-
ments was also investigated while the total number of
measurements was kept constant (144 measurements) by

varying the number of measurements and subjects simulta-
neously. Only for six measurements per subjects (24 subjects)
bias in the population parameters exceeded 2%, and in
almost all cases bias in the standard deviations was less than
4% (Fig. 2, third row). RMSE was relatively independent of
the number of measurements per subject. For the population
means RMSE was minimal for 12 measurements (12 subjects;
Fig. 3, third row). In contrast, RMSE of the standard
deviations was lowest for six measurements, whereas RMSE
of sres decreased with the number of measurements. The
results show that the number of measurements is not a
critical factor: bias and RMSE for six measurements (24
subjects) were not essentially different for 36 measurements
(four subjects).

Measurement Error

Both bias (Fig. 2, last row) and RMSE (Fig. 3, last row)
increased with increasing measurement error in a broadly
linear manner, indicating numerical stability with up to 40%
measurement error.

Evaluation of Standard Errors

The standard errors of population and individual param-
eters obtained from ITSB were evaluated by counting the
number of subjects for which the true parameter value was
within the calculated 95% confidence interval. Of the true
population means, 94.7% was within the calculated confi-
dence interval, ranging from 93 to 96% for the six parame-
ters; for the standard deviations this value was 94.0% (range
91Y97%), for the correlation coefficients 95.1% (range
93Y98%) and for the residual standard deviation 95%. Of
the individual parameters, 94.9% of the true individual
parameters was within the calculated confidence interval
(range 93.4Y96.5%).

Model Selection

The ITSB analysis was also performed with a two-
compartment model (with parameters CL, CL12, V1, V2). In
each of the 100 sets the two-compartment model resulted in a
higher AIC value than the three-compartment model. The
mean difference in AIC was 291 (range 175Y374). Therefore
it can be concluded that the ITSB algorithm is able to
identify the three-compartment model as the better fitting
model compared to the two-compartment model in all sets.

DISCUSSION

The results demonstrate that ITSB is a suitable tech-
nique for population pharmacokinetic analysis of rich data
sets, and is superior to STS and MEM in the analysis of the
presented data set. ITSB performed well under a wide variety
of conditions with respect to the number of subjects, number
of measurements, degree of measurement error, and covari-
ance between parameters.

The method described to improve the robustness of
ITSB by testing multiple initial estimates for the population
parameters and residual standard deviation (sres) produced
reliable results independent of the initial estimates for the data

Table V. Precision of Individual Parameters

Variable STS ITSB NONMEM

CL 11 2.8 2.8

V1 7.8 7.0 7.1

CL12 53 19 20

V2 59 16 17

CL13 40 15 15

V3 52 13 13

The presented values are RMSE (in percent of the exact values) of

1,000 subjects, analyzed as 100 panels of 10 subjects, by Standard

Two-Stage (STS), Iterative Two-Stage Bayesian (ITSB), and nonlin-

ear Mixed Effect Modeling (NONMEM).
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sets tested. Without this method ITSB was found to be
moderately sensitive to the initial estimates of the population
parameters and sres, sometimes converging to a local min-
imum instead of the global minimum, as observed both with
the clinical data set and with the Monte Carlo simulated data
sets. Therefore we recommend using this procedure routinely
for the analysis of real data.

The results obtained with the clinical data set (Table II)
showed some characteristic properties of the three methods
for population analysis. Population means agreed reasonably
well between the three methods. In contrast, population

standard deviations (coefficient of variation) for STS were
markedly higher than for ITSB, in agreement with the
overestimation of the standard deviation for STS in the
simulation study (Table III). NONMEM analysis results in
lower standard deviations than ITSB, and the standard
deviation of the parameters CL12 and CL13 are close to zero.
The latter occurred also in four sets of the simulation study.

From Tables III and IV it can be seen that the accuracy
and precision of the population means are much better than
that of the population standard deviation, as expected from
statistical theory. The estimation of the correlation coeffi-

Fig. 2. Influence of number of subjects, number of measurements, number of measurement and subjects

(total number of measurements 144), and degree of measurement error on accuracy (expressed as

percent of exact value) of population means (left column), population standard deviations and residual

standard deviation (right column) obtained by ITSB.
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cients between the population parameters results in a de-
creased precision of parameter estimates, but the estimated
correlation coefficients were unbiased.

RMSE of all values reduces by about 50% by increasing
the number of subjects or the number of measurements by a
factor 4, i.e., RMSE is inversely proportional to the square
root of the total number of measurements, as expected from
statistical theory. This does not apply to bias: increasing the
number of subjects from 10 to 40, or increasing the number of
measurement from 12 to 36 hardly affects ME. However, the
level of bias is small compared to RMSE, even for 40 subjects

or 36 measurements, and thus it does not play a significant
role.

In the calculation of RMSE values, the actual mean
value and sample standard deviation of each panel of subjects
were considered as the Ftrue_ values for that particular panel.
Therefore the RMSE values reflect the suitability of the
population analysis to reconstruct the actual population
parameters (mean and standard deviation) for that particular
panel of subjects, rather than the Fexact_ parameters of the
underlying statistical distribution from which the subjects
were drawn. If the latter Fexact_ values would be used as the

Fig. 3. Influence of number of subjects, number of measurements, number of measurement and subjects

(total number of measurements 144), and degree of measurement error on precision (expressed as

percent of exact value) of population means (left column), population standard deviations and residual

standard deviation (right column) obtained by ITSB.

2757Iterative Two-Stage Bayesian Population Analysis



Ftrue_ values, RMSE values would be somewhat larger, and
less discriminating between methods.

The applied procedure for ITSB analysis was similar to a
method described in literature (9,10), with a few modifica-
tions. In the denominator of Eq. (4) a value of nsubj j 1 was
used, where the cited papers used nsubj. Our equation
resulted in unbiased estimates of the population standard
deviation (ME on average 0.1%), whereas the original
equation using nsubj resulted in an underestimation of the
standard deviations by on average 7.2%. This finding is in
agreement with statistical theory, which predicts an error offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� 1=nÞð
p

for n = 10 patients, resulting in an underestima-
tion of 5.1%.

We performed the ITSB analysis with two different sets
of initial estimates. Initially we used the exact parameter
values (mean, standard deviation and residual error standard
deviation) as initial estimates. These initial estimates were
also used for STS and MEM analysis. This allows a com-
parison of the methods under the most favorable circum-
stances, avoiding poor performance due to problems with
convergence to the optimal solution as a result of poor initial
estimates. However, in practice these Fideal_ initial estimates
are not known, and the robustness of the method to poor
initial estimates may become a major issue. We indeed
observed that ITSB performed less well when started with
poor initial estimates. In a number of data sets ITSB con-
verged to a solution with a markedly higher objective function
value than that obtained starting with the exact values as initial
estimates. The proposed procedure for improving robustness,
exploring the parameter space by testing lower and higher
values of each parameter, was found to be adequate and
resulted in virtually identical results as when starting with the
exact values. It should be noticed that in practical situations
the problem of convergence to a local minimum may be
minimized by the user, e.g., by carefully selecting the initial
estimates based on prior information, and by repeating the
analysis with different sets of initial estimates. Our procedure
for exploring the parameter space is an automated version of
the latter approach.

In contrast to MEM, ITSB does not provide standard
errors of population parameters. Therefore we estimated the
standard errors from the results obtained in the Monte
Carlo analysis, assuming that the standard error of each
parameter (means, standard deviations, correlation coeffi-
cients, and residual standard deviation) for each set could be
approximated from the corresponding RMSE. The evalua-
tion of the standard errors showed that this procedure
results in reliable estimates for the standard error of each
population parameter.

The application of STS has some obvious disadvantages,
mainly due to the nature of the individual parameters.
Individual pharmacokinetic parameters (e.g., clearance and
volume of distribution in a particular subject) are not
obtained by a direct and accurate measurement (in contrast
to, e.g., the subject_s weight), but by PK modeling of a set of
measurements. Each of these measurements is perturbed by
a certain level of measurement error, which may be relatively
large (typically, 5 to 25%). Moreover, the modeling proce-
dure will introduce some degree of bias, since there will be
always some degree of model misspecification. Finally, the
identification of model parameters from a series of measure-

ments may be cumbersome. Even in the absence of model
misspecification, relative small measurement errors may have
a profound influence on parameter estimates. As a result,
parameter estimates have a limited degree of precision, as
reflected in their standard error estimated during the fitting
procedure. The problem in STS analysis becomes apparent if
the standard error in the parameters is of the same order of
magnitude as, or even larger than, the interindividual vari-
ability of the parameter, as reflected in the interindividual
standard deviation. The significant overestimation of the
interindividual standard deviations by STS is due to the large
standard errors in the estimates of parameters CL12, CL13, V2,
and V3. These parameters are not well defined during the
fitting procedure, and their value may deviate significantly
from the true value to obtain the minimum of the objective
function. This problem is avoided by ITSB, since such
parameters are influenced in the direction of the population
mean due to the Bayesian Fpenalty._ The results of this study
demonstrate that the standard deviations obtained by ITSB
are unbiased.

Using STS with multi-compartment models, it is a well-
known problem that the data cannot be described by the
same model for each subject. For example, in a majority of
the subjects a three-compartment model fits significantly
better to the data, whereas in some subjects no acceptable
parameters for this model can be obtained, and/or the two-
compartment model cannot be rejected on statistical grounds,
e.g., by an F-test or AIC value. As a result, a two-compartment
model must be accepted in these subjects. In this case the
second stage is hampered by the application of two different
models, and a consistent analysis is not possible. This problem
may be, at least partly, responsible for the poor performance
of STS in our simulations. This problem does not arise during
the application of ITSB. If the data of a particular subject
contain insufficient information about one or more parame-
ters, the Bayesian procedure warrants that these particular
parameters do not deviate too far from the population
average, and that it has a relative large standard error. As a
result this particular estimate hardly affects the new popula-
tion mean, and therefore does not perturb the performance of
the population analysis. Parameter constraints or special
intervention in the procedure are not necessary.

The poor performance of STS implies that STS should
not be considered as a reliable method for population
analysis of rich data in more complex models. Although
STS may still be useful as a simple and fast tool for a
preliminary analysis, it should not be used to provide final
results.

The performance of MEM was less good than for ITSB,
because population standard deviations were underestimated
by MEM (Table III). In 4 out of 100 sets the NONMEM
analysis resulted in very small values for s(CL13), despite the
known interindividual variability in that parameter. This
problem was not observed in ITSB.

The NONMEM analysis took much more time to
execute compared to ITSB: a single data set took about 110 s
(with exact initial estimates), compared to about 2 s (without
procedure for improving robustness, using exact initial esti-
mates) to 10 s (with procedure for improving robustness, using
poor initial estimates) for ITSB (execution times on a PC with
processor operating at 900 MHz).
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We suggest that Monte Carlo simulation and analysis
should be routinely performed for each real data set, re-
gardless of the population analysis technique used. This allows
an evaluation of the precision of the results obtained by
population analysis, including standard errors and confidence
intervals of each population and individual parameter.

In conclusion, ITSB is a suitable technique for popula-
tion pharmacokinetic analysis of rich data sets, and in the
presented data set it is superior to STS and MEM.

APPENDIX

The following control file was used in the NONMEM
analysis. For practical reasons parameters were expressed in
liters and liters per minute for volume and clearance param-
eters, respectively.

$PROB MCRA
$DATA mcra.dat

IGNORE = C

$INPUT ID TIME WGT AMT RATE DV
$SUBROUTINES ADVAN11 TRANS4
$PK

CALLFL = 1
V1=THETA(1)*EXP(ETA(1))
V2=THETA(2)*EXP(ETA(2))
V3=THETA(3)*EXP(ETA(3))
CL=THETA(4)*EXP(ETA(4))
Q3=THETA(6)*EXP(ETA(6))
Q2=(THETA(2)*(THETA(6)/THETA(3) + THETA

(5)))*EXP(ETA(5))
S1=V1

$ERROR

CALLFL = 0
Y=LOG(F)+ERR(1)

; Starting at the exact values
$THETA (0, 3.64)(0, 3.01)(0, 6.44)(0, 0.51)(0, 0.048)(0, 0.051)
$OMEGA 0.0533 0.1217 0.1063 0.1245 0.2215 0.0650
$SIGMA 0.01

;Without POSTHOC only typical values are in the table
$ESTIMATION MAX = 9999 SIG = 6 METHOD = COND

NOABORT POSTHOC
$TABLE TIME V1 V2 V3 CL Q2 Q3 DV
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